
Journal of Experimental Psychology:
Learning, Memory, and Cognition
1999, Vol. 25, No. 6, 1534-1555

Copyright 1999 by the American Psychological Association, Inc.
0278-7393/99/$3.00

Constraint Relaxation and Chunk Decomposition
in Insight Problem Solving

Giinther Knoblich
Max-Planck-Institut fur psychologische Forschung

Stellan Ohlsson
University of Illinois at Chicago

Hilde Haider and Detlef Rhenius
Universitat Hamburg

Insight problem solving is characterized by impasses, states of mind in which the thinker does
not know what to do next. The authors hypothesized that impasses are broken by changing the
problem representation, and 2 hypothetical mechanisms for representational change are
described: the relaxation of constraints on the solution and the decomposition of perceptual
chunks. These 2 mechanisms generate specific predictions about the relative difficulty of
individual problems and about differential transfer effects. The predictions were tested in 4
experiments using matchstick arithmetic problems. The results were consistent with the
predictions. Representational change is a more powerful explanation for insight than
alternative hypotheses, if the hypothesized change processes are specified in detail.
Overcoming impasses in insight is a special case of the general need to override the
imperatives of past experience in the face of novel conditions.

Experience is both a help and a hindrance. On the one
hand, human beings have no choice but to consider each new
situation, task, or problem in light of past experience. There
is no other resource for understanding the present and
anticipating the future. On the other hand, life is complex,
and there is no guarantee that tomorrow will be like
yesterday. Past experience is necessarily misleading part of
the time.

Problem solving often unfolds in a way that reflects the
need to overcome the imperatives of past experience. The
thinker begins by exploring the approaches to the problem
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suggested by past experience. When success does not
follow, he or she enters an impasse, a state of mind that is
accompanied by a subjective feeling of not knowing what to
do and the cessation of overt problem-solving behavior.
Continued attention to the problem sometimes leads to the
appearance of a new idea, solution, or approach in conscious-
ness. If the insight turns out to be unhelpful, the impasse
continues. However, if the new idea does point the way to a
solution, goal attainment is likely to be purposeful and swift,
in marked contrast to the hesitation and passivity of the
impasse phase.

Although the exploration-impasse-insight-execution se-
quence was first identified in the context of scientific
discovery (Helmholz, 1896; Poincare, 1908/1952), it can be
reliably elicited by relatively simple problems. It was
introduced into laboratory research on problem solving by
the Gestalt psychologists (Duncker, 1945; Koffka, 1935;
Kohler, 1925; Wertheimer, 1945/1959; see Ohlsson, 1984a,
for a review). Wallas (1926) independently arrived at a
similar formulation. After a hiatus in the 1960s and 1970s, a
resurgence of interest in insight has occurred in the past
decade (Bowers, Regehr, Balthazard, & Parker, 1990; Dorf-
man, Shames, & Kihlstrom, 1996; Fiore & Schooler, 1998;
Kaplan & Simon, 1990; Keane, 1989, 1996; Lung &
Dominowski, 1985; Metcalfe, 1986a, 1986b; Metcalfe &
Wiebe, 1987; Ohlsson, 1984a, 1984b, 1990,1992b; Patalano
& Seiffert, 1994; Schooler, Ohlsson, & Brooks, 1993;
Simonton, 1988; Smith, Ward, & Finke, 1995; Sternberg &
Davidson, 1995; Yaniv & Meyer, 1987).

The insight sequence cries out for explanation. If a
problem is solved eventually, then the problem solver was,
by definition, competent to solve it. If so, why does he or she
encounter an impasse? In contrast, if he or she initially
encounters an impasse, how is the problem solved? What
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mental mechanism can explain both the occurrence of an
impasse and its eventual resolution (Ohlsson, 1984b)?

In previous work, Ohlsson (1992b) proposed that past
experience biases the initial representation of a problem or a
situation in particular ways. The initial representation acti-
vates potentially useful- knowledge elements (categories,
chunks, concepts, constraints, methods, operators, proce-
dures, rules, schemas, .etc.)- These knowledge elements
implicitly define a space of possible solutions. If past
experience is not helpful vis-a-vis the problem, that initial
problem space does not contain a workable solution, and an
impasse will result.

The impasse can be broken by changing the representa-
tion of the problem. Anew problem representation shifts the
distribution of activation over long-term memory, possibly
activating dormant but relevant knowledge elements. The
effect is to alter or extend the space of possibilities that are
considered. If the new problem space contains a solution and
if that solution is short and simple to execute, the solution
will be completed quickly and unhesitantly (Ohlsson, 1984b,
1992b).

To turn this idea into a precise and testable theory, we
must describe how, by which processes, problem representa-
tions are changed. The purpose of this article is to present
empirical evidence for two such processes: constraint relax-
ation (Knoblich & Haider, 1996; Ohlsson, 1992b) and chunk
decomposition (Ohlsson, 1990). In this article, we define
these processes, predict relative problem difficulty and
differential transfer effects in the domain of matchstick
arithmetic, report four experiments that tested those predic-
tions, and discuss alternative explanations for our results.

General Theory

Constraint Relaxation

To understand a problem is, in part, to understand what
does and does not count as a solution. Knowledge of this sort
consists of constraints (Mitrovich & Ohlsson, in press;
Ohlsson, 1992a, 1996; Ohlsson & Rees, 1991). For example,
opening a door is normally subject to the constraint that the
door should not become damaged in the process.

Faced with an unfamiliar problem, the problem solver
knows neither what to do nor what to avoid. If the problem
reminds him or her of some problem encountered in the past,
constraints relevant to that problem are likely to be acti-
vated. Those constraints may or may not be adaptive
vis-a-vis the unfamiliar problem (Anderson, 1989; Isaak &
Just, 1995; Keane, 1996; Ohlsson, 1992b; Richard, Poitre-
naud, & Tijus, 1993). If not, then the space of options
circumscribed by the set of active constraints might not
contain any solution to the current problem.

Impasses caused by an overly constrained solution space
can be broken by relaxing the inappropriate constraints
(Isaak & Just, 1995; Knoblich & Haider, 1996; Knoblich &
Wartenberg, 1998; Richard et al., 1993; Shultz & Lepper,
1996). In an emergency, it might be necessary to break
through a locked door. In this type of situation, problem
solving might be less a matter of searching among possibili-

ties than of redefining what to search for. To break through a
locked door in time, one should perhaps search for an ax
rather than a key.

We do not claim that constraint relaxation is deliberate or
voluntary. Instead, we propose that expanding the set of
options to be considered by relaxing constraints is one of the
mind's responses to persistent failure.

Task difficulty. At any one moment in time, several
constraints are likely to be active, and they are unlikely to be
relaxed all at once. It is more plausible that some constraints
have a higher probability of being relaxed than others.

We hypothesize that the probability that a constraint be
relaxed is inversely proportional to its scope. The scope of a
constraint is determined by how much a problem representa-
tion is affected if that constraint is relaxed. If problem
representations are analogous to parse trees and if a con-
straint applies at some node in such a tree, then scope is
determined by the height of that node. A constraint has a
wider scope the higher the node at which it applies.
Cognitive economy dictates that constraints of narrow scope
should have a higher probability of being relaxed than
constraints of wide scope because the resulting revisions in
the problem representation are more circumscribed. The
idea that knowledge structures tend to undergo local,
peripheral, or superficial changes before they undergo
global, central, or fundamental changes has been proposed
in cognitive psychology (Chi, 1992), developmental psychol-
ogy (Vosniadou, 1994), and social psychology (Rokeach,
1970).

To use the constraint relaxation hypothesis to predict the
relative difficulty of individual problems, one needs to (a)
identify the constraints that apply in each problem, (b) rank
order the constraints with respect to scope, and (c) identify
which constraints need to be relaxed to solve the problems.
Everything else being equal, a solution that violates narrow
constraints should be easier to think of than a solution that
violates wide constraints, and a solution that violates few
constraints should be easier to think of than one that violates
several constraints.

Transfer. Once a problem representation has been
changed, the change should persist and so should transfer to
all relevant subsequent problems. Hence, differences in
initial difficulty due to the need to relax constraints should
disappear. That is, all problems should become as easy as the
simplest problem.

Chunk Decomposition

Familiarity with a class of objects or events leads to the
creation of patterns that capture recurring constellations of
features or components. This process is generally referred to
as chunking. Expert problem-solving performance is associ-
ated with a large repertoire of problem-relevant chunks
(Ericsson & Lehmann, 1996; Holding, 1985, pp. 113-120).

When faced with an unfamiliar task, the problem solver
cannot know which chunks acquired in past experience are
relevant for the solution. However, the application of
perceptual chunks is an automatic process (Brewer, 1988;
Devine, 1989; Purdue & Gurtman, 1990). If a chunk is
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available in a person's memory, he or she will automatically
recognize instances of that chunk in the environment.

If the available chunk repertoire does not parse the
problem situation in a way that is helpful vis-a-vis finding
the solution, an impasse might result. This type of impasse
can be broken by decomposing the inappropriate chunks into
their component features and so paving the way for an
alternative parse of the problem situation (Knoblich &
Wartenberg, 1998; Ohisson, 1990). Researchers have stud-
ied the formation of chunks (Anderson, 1993; Koedinger &
Anderson, 1990; Rosenbloom, Laird, & Newell, 1989), but
there are no models of chunk decomposition in the cognitive
literature.

We do not claim that chunk decomposition is under
conscious, voluntary control. Rather, we suggest that mov-
ing to a more fine-grained perceptual representation by
breaking up familiar perceptual patterns (chunks) is one of
the mind's responses to persistent failure.

Task difficulty. When a thinker studies a problem situa-
tion, many chunks are likely to be active. If the problem
solver enters an impasse, the perceptual system cannot
unpack all chunks into their components at once. Presum-
ably, the result of such a process would be experienced
subjectively as a state of kaleidoscopic confusion or stimu-
lus overload. It is more probable that some chunks are
decomposed before others.

We propose that the probability that a chunk will be
decomposed is inversely proportional to the tightness of the
chunk. We distinguish between tight and loose chunks on the
basis of whether their components are themselves chunks,
that is, meaningful perceptual patterns. A chunk with
components that are themselves chunks is loose; a chunk
with components that are not themselves chunks is tight.

For example, experienced chess players perceive a chess-
board configuration in terms of perceptual patterns that have
meaning within the game (Chase & Simon, 1973; Holding,
1985). This does not imply that chess players have lost their
ability to perceive individual chess pieces. Each piece
remains a meaningful unit by itself even though it appears as
a component of one or more familiar patterns. A chess chunk
is therefore a loose chunk.

In contrast, consider the original example of chunking:
recoding binary digits into digits of base 10 (Miller, 1956).
This process produces tight chunks. For example, recoding
1112 as 710 does not retain the three 1 symbols as visible
parts of the 7 symbol. Therefore, it is a tight chunk. We do
not want to imply that tight chunks are not decomposable.
The arabic digit 7 could be further decomposed in a
horizontal and a diagonal line. However, those lines would
not be meaningful in the context of numbers.

We hypothesize that chunk decomposition begins with
loose chunks. Only if the failure persists will the process
continue with the decomposition of tight chunks. To predict
the relative difficulty of any two problems, one needs to (a)
identify which chunks are likely to be active, (b) classify
them with respect to tightness, and (c) decide which chunks
need to be decomposed to find the relevant solutions.
Everything else being equal, a problem solution that requires
the decomposition of a tight chunk is more difficult to think

of than a problem solution that requires the decomposition
of a loose chunk.

Transfer. Once a chunk has been decomposed, it ought
to stay decomposed. A single encounter with a particular
problem should be sufficient to remove any difficulty
associated with the need to decompose chunks that are
inappropriate for that problem. Hence, differences in initial
difficulty should disappear.

Application

Matchstick Arithmetic

A matchstick arithmetic problem consists of a false
arithmetic statement written with Roman numerals (I, II, III,
etc.), arithmetic operations (+, —), and equal signs con-
structed out of matchsticks. Figure 1 shows two example
problems in the format in which they were presented to the
participants in our experiments. The goal is to move a single
stick in such a way that the initial false statement is
transformed into a true arithmetic statement. A move
consists of grasping a single stick and moving it, rotating it,
or sliding it. The rules are that (a) only one stick is to be
moved; (b) a stick cannot be discarded, that is, it can be
moved only from one position in the equation to another;
and (c) the result must be a correct arithmetic statement. An
additional rule is that slanted sticks cannot be interpreted as /
and that the symbols V and X always consist of two slanted
sticks. We refer to the initial and goal statements as
"equations" even though they do not contain variables.
Each problem has a unique solution.

For example, the false equation in Figure 1A can be
transformed into the true equation

vi = in + in

by removing the left-most stick from TV and putting it
immediately to the right of the remaining V.

All matchstick arithmetic problems considered in this
article consist of three roman numerals separated by two
arithmetic signs and are solved with a single move. Hence,
differences in difficulty are solely a function of how hard it is
to think of the right move.

(a)

(b)

Figure 1. Two matchstick arithmetic problems in the format used
in the experiments.
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Constraints in Matchstick Arithmetic

Problem solvers who are familiar with arithmetic and
algebra but who are novices with respect to matchstick
arithmetic are likely to assimilate the latter to their knowl-
edge of the former. However, if the constraints of arithmetic
and algebra are adhered to, matchstick arithmetic problems
are unsolvable (Knoblich & Haider, 1996). The problem
solvers must relax one or more of the following three
constraints:

1. Value constraint: A numerical value cannot be changed
except through operations that produce compensating changes
in other values, as when the same quantity is added to or
subtracted from both sides of an equation.

2. Operator constraint: An arithmetic function (e.g.,
addition or subtraction) cannot be arbitrarily deleted, intro-
duced, or altered, except through operations that make
corresponding changes elsewhere in the equation. The same
is true of the equal sign.

3. Tautology constraint: Arithmetic statements are sup-
posed to have the general form

X = f(Y, Z),

where f is addition, subtraction, or some other arithmetic
function, because their purpose is to specify a calculation to
be performed. Tautological statements of the general form
X = X are meaningless. (They have their uses in more
advanced mathematics, e.g., as starting points for proofs, but
not in elementary arithmetic.)

We assume that the visual system parses matchstick
arithmetic problems into a representation with three levels:
numerals (I, II, HI, etc.), functional terms (I + V, III - II,
etc.), and entire equations (VI = V + I, IH = n - I, etc.). The
higher the level at which a change is introduced, the more
encompassing is the resulting revision of the representation.

The three constraints map onto the three representational
levels as follows: (a) The value constraint applies at the level
of numerals; (b) the operator constraint applies at the level of
functional terms; and (c) the tautology constraint applies to
changes that transform the structure of an entire equation,
for example, from a regular to a tautological form, or vice
versa.

We hypothesize that constraints are more difficult to relax
the higher the level at which they apply. That is, we predict
that the tautology constraint has a lower probability of being
relaxed than the operator constraint, which in turn has a
lower probability of being relaxed than the value constraint.

To solve a matchstick arithmetic problem, one needs to
relax one or more constraints, but different problems require
relaxation of different constraints. For example, moving a
stick from one numeral to another requires that the value
constraint be relaxed, whereas changing a plus sign into an
equal sign by rotating the vertical stick requires that the
operator constraint be relaxed. The mapping between con-
straints and moves allows one to predict for any two moves
which move is easier. By considering which moves are
required to solve particular problems, these predictions are

transformed into predictions about the relative difficulty of
problems (or types of problems).

Chunks in Matchstick Arithmetic

The composite numerals (II, IV, VIII, XI, etc.) are loose
chunks in the technical sense introduced in the General
Theory section. For example, although the composite nu-
meral VII is perceived as a symbol for the number 7, it is also
perceived as consisting of the symbol V, followed by two
tokens of the symbol /. Even though VII is a chunk, its parts
(V, /, and /) are chunks as well.

In contrast, the three numerals I, V, and X and the minus
sign are tight chunks. For example, a V sign is perceived as a
single unit. There are few contexts (other than matchstick
arithmetic) in which it is useful to perceive a V or an X as
consisting of separate lines. Hence, this decomposition has
little basis in prior experience. In addition, V and X do not
decompose into meaningful units. Slanted sticks do not have
a meaning in matchstick arithmetic.

The plus sign and the equal sign share some features with
both loose and tight chunks. On the one hand, they
decompose into potentially meaningful components. The
plus sign has two perceptually obvious components: a
vertical line and a horizontal line. In the context of
matchstick arithmetic, the vertical line is equivalent to the
symbol / for unity, and the horizontal line can be seen as a
minus sign. Hence, the plus sign decomposes into two
meaningful chunks. The equal sign decomposes into two
perceptually obvious components, one of which can be
interpreted as a minus sign. (It is unclear how the second
component might be interpreted in this case.) On the other
hand, neither plus signs nor equal signs are commonly
analyzed in this way, so these decompositions have little
support from prior experience. Hence, we tentatively as-
signed the plus and equal signs to a category of "intermedi-
ate chunks."

Different matchstick arithmetic moves require decomposi-
tion of different chunks. For example, moving a stick from a
symbol like VII requires that the chunk for VII is decom-
posed into its components, V, I, and /. Similarly, changing a
plus sign into an equal sign by rotating the vertical stick
requires that the source chunk " + " is decomposed into its
two matchstick components, " —" and "|," and that the
target chunk " = " is decomposed into its components. We
hypothesize that tight chunks have a lower probability of
being decomposed than intermediate chunks, which in turn
have a lower probability of being decomposed than loose
chunks.

By mapping moves onto chunk types, one can predict, for
any two moves, which move is easier. For example, moving
the numeral 7 from one composite numeral to another
respects the integrity of all tight chunks. Moving a match-
stick from a tight chunk to a composite numeral or vice versa
should be more difficult. A move that removes a matchstick
from a tight chunk, changes its orientation or location, and
adds it again to the same chunk, thus changing the symbol
into another, is a special case. Such a move requires the
decomposition of a single numeral, but it requires the
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decomposition of two chunk types: the source chunk and the
target chunk.

By considering which moves are required to solve particu-
lar problems, one can predict the relative difficulty of
individual matchstick arithmetic problems. Everything else
being equal, the tighter the chunks that need to be decom-
posed, the lower the probability of thinking of the correspond-
ing move. By considering which move is required to solve a
particular problem, one can convert such predictions into
predictions about the relative difficulty of particular prob-
lems (or problem types).

Problem Types

The purpose of this section is to define four types of
matchstick arithmetic problems and to rank order them with
respect to difficulty. We describe each type in terms of the
constraints that need to be relaxed and the tightness of the
chunks that need to be decomposed.

1. Type A (value constraint; loose chunks). The problem

VI = VII + I

is solved by moving one matchstick from the numeral VII to
the numeral V7to produce the equation

vn = vi +1.

This move requires relaxation of the value constraint (but no
other constraint). In addition, it requires decomposition of
the source chunk VI and the target chunk VII, both of which
are loose chunks.

2. Type B (value and operator constraints; loose and
intermediate chunks). The solution to the problem

I = n + II

is to remove one stick from the plus sign, thereby changing
addition into subtraction, and add that stick to the first term
to the right of the equal sign. The result is

I = m - II.

This move violates the value and operator constraints. In
addition, it requires decomposition of the plus sign (the
source chunk) and the numeral /// (the target chunk). Hence,
problems of Type B should be more difficult than problems
of Type A.

3. Type C (operator and tautology constraints; intermedi-
ate chunks). The solution to

in = in + in

is to remove the arithmetic operation by rotating the vertical
stick of the plus sign, producing the following solution:

in = m = m.

This solution violates both the operator and tautology

constraints. In addition, it requires decomposition of both
the plus sign and the equal sign. Hence, problems of Type C
should be more difficult than problems of Type B. Problem
Types A through C form a ladder where the constraints
become wider or the chunks tighter for each rung.

4. Type D (value constraint; tight chunks). The solution to

xi = m + in

is to slide one of the matchsticks that make up the symbol X
so as to change the latter into the symbol V, giving the result

VI = HI + III.

This move violates the value constraint but no other
constraint. However, it requires that the two tight chunks X
and V are decomposed into their components. Hence,
problems of Type D should be more difficult than problems
of Type A. Without an interval scale for measuring difficulty,
we could not predict the relative difficulty of Type D versus
Type B or C. The purpose of including Type D problems in
the study was to ascertain the effect of chunk decomposition
independently of constraint relaxation by comparing perfor-
mance on Type D problems with performance on Type A
problems.

Transfer

A single encounter with a matchstick problem of a given
type should be sufficient to remove the sources of difficulty
associated with that problem type. Hence, there should be no
significant differences in difficulty among the four problem
types on a second encounter. Specifically, removing sources
of difficulty should reduce the difficulty of Problem Types B,
C, and D to the difficulty level of Problem Type A, the
simplest problem type. This argument predicts an interaction
between initial difficulty and transfer, with the simplest
problem type (Type A) showing the least amount of transfer
and the most difficult (Types C and D) the largest.

Experiment 1A

The purpose of Experiment 1A was to verify that con-
straint relaxation and chunk decomposition influence perfor-
mance on matchstick arithmetic problems. The need for both
processes was systematically varied across problems in a
within-participant design. The participants solved two blocks
of problems. The problems within each block exemplified
the four different Problem Types A through D. The problems
in the second block were matched to the problems in the first
block with respect to type. The following hypotheses were
tested:

1. Constraint relaxation hypothesis: The probability of
relaxing a constraint is lower the wider the scope of the
constraint. Given a limit on the amount of time available to
find a solution, the frequency of solution is highest for Type
A, lower for Type B, and lowest for Type C on the first block
of problems. Solution times in Block 1 are highest for Type
C, lower for Type B, and still lower for Type A.
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Table 1
Matchstick Arithmetic Problems Used in Experiment 1A by Type and Block

Type

A -
A
B
B "
C
D

Block

Problem

VI = VH + I
IV = III + III

I = II + II
IV = III - I
III = III + III
XI = III + III

1

Solution

VII = VI + I
vi = in + m

I = III - II
rv-m = i
in = in = in
vi = m + m

Block 2

Problem

n = in +1
ix = vra + in
III = V + III
v = m - n

IV = IV + IV
VI = Vffl + III

Solution

III = 11 + 1
xi = vra + in
III = VI - III
V - III = II

IV = IV = IV
xi = vin + in

2. Chunk decomposition hypothesis: The probability of
decomposing a chunk is lower if tight chunks have to be
decomposed than if only loose chunks have to be decom-
posed. Given a time limit, the frequency of solution should
be higher for Type A than for Type D on the first block of
problems. Solution times in the first block should be higher
for Type D problems.

3. Transfer hypothesis: Once relaxed, constraints stay
relaxed; once decomposed, tight chunks stay decomposed.
That is, there are no significant differences with respect to
frequency of solution and solution time among the four
Problem Types A through D on the second block of
problems. Furthermore, there is an interaction between
problem type and encounter, such that performance on more
difficult problem types changes more from the first to the
second block of problems.

Method

Participants. Twenty undergraduates (13 women and 7 men)
from the University of Hamburg participated in the study for course
credit. They ranged in age from 19 to 45 years. We selected only
participants who were familiar with Roman numerals. Because
there were only within-participant treatments in this experiment, all
participants were assigned to the same condition. The participants
were seen individually.

Procedure, materials, and design. The participants first went
through a training phase aimed at reducing individual differences in
how fast they could recognize Roman numerals. Each participant
looked at numerals presented on a computer screen, pushed a
button as soon as he or she had identified the value of the presented
numeral, and then said the value out loud. No feedback was given.
There were five training blocks, with 75 trials per block. Within
each block, all Roman numerals / and XV were presented five times
each in random order.

In the experimental phase, there were two blocks of six
matchstick arithmetic problems. Each block contained two in-
stances of Type A, two instances of Type B, one instance of Type C,
and one instance of Type D (see Table 1). The six problems were
presented in random order within blocks. A new random order was
generated by the computer for each participant.

The problems were presented on a computer screen. Participants
pushed a button as soon as they knew the correct solution and said
it out aloud afterward. If the solution was correct, they were
presented with the next task. If the solution was not correct, they
continued to work on the same problem until they found another
solution or until they reached the time limit of 5 min. If participants
did not solve a problem within 5 min, the trial was interrupted, and
they were told the solution.

Results

The dependent variables of this experiment were the
frequency of problems solved within the 5-min limit and
solution times. The results are reported separately for each
variable.

Solution frequencies. The results showed the predicted
order of task difficulty for the first block of problems.
Problems that required the relaxation of constraints with
wider scope were solved less frequently (Type C < Type
B < Type A). Figure 2 shows the cumulative frequencies of
solutions for Types A through C. The predicted ordering of
the problem types held at each interval. Problems that
required decomposition of tight chunks were solved less
frequently than problems that required only decomposition
of loose chunks (Type D < Type A). Figure 3 shows the
cumulative frequencies of solutions for Types A and D. The
predicted rank ordering held at each 1-min interval.

There were no significant differences in difficulty among
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Figure 2. Cumulative solution rates for Problem Types A-C in
Block 1 of Experiment 1A.
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s

Figure 3. Cumulative solution rates for Problem Types A and D in
Block 1 of Experiment 1A.

the four problem types in the second block of problems.
Figure 4 shows the cumulative frequencies of solutions on
the second block across 1-min intervals for each problem
type. The four curves are almost superimposed. In addition,
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the contrast between Figures 2 and 3, on the one hand, and
Figure 4, on the other hand, shows the predicted interaction
between initial difficulty and transfer: The upward displace-
ment of the curves in Figure 4 as compared with Figures 2
and 3 is larger the more difficult the problem type.

An alpha level of .05 was used for all statistical tests. A
4 X 2 analysis of variance (ANOVA) with the variables
problem type (A, B, C, or D; within participants) and block
(1 vs. 2; within participants) was computed on solution
frequency. The main effect of problem type was significant,
F(3, 57) = 7.11, MSE = 0.0838, p < .001. Post hoc
comparisons revealed that significantly fewer problems of
Type B were solved than of Type A (p < .05) and signifi-
cantly fewer problems of Type C than of Type B (p < .01).
A further comparison revealed that problems of Type D were
solved less frequently than problems of Type A (p < .05). In
summary, the differences were C < B < A and A < D.

Furthermore, there was a significant main effect of block,
F(l , 19) = 14.41, MSE = 0.1253, p < .01. More problems
were solved during Block 2. There were no significant
differences among problem types during the second block

Consequently, there was a significant two-way interaction
between problem type and block, F(3, 57) = 3.24, MSE =
0.0984, p < .05. The amount of transfer between blocks
differed for different problem types. Post hoc comparisons
revealed a significant transfer effect for those problems that
were solved less frequently during the first block, namely,
Type B (p < .05) and Type C (p < .001). No significant
transfer was observed for problems of Type A (p = .80). The
transfer effect for problems of Type D (75% solved on Block
1 vs. 90% solved on Block 2) did not reach statistical
significance (p = .13).

Solution times. In a next step, solution times for prob-
lems of Types A through D were analyzed. For problems that
were not solved, the solution time was replaced with the
upper time limit of 5 min. The resulting measure was a
conservative estimate of the actual solution time because the
solution time was underestimated for problems that were not
solved.

Because the distribution of solution times was highly
skewed, we report medians and quartiles and used ordinal
tests to assess statistical significance. Table 2 shows medians
and lower and upper quartiles for problems solved in Block
1. The medians were consistent with the rank ordering
predicted on the basis of the scope of the relevant constraints
(Type A < Type B < Type C) as well as the rank ordering

Table 2
Solution Times (in Seconds) for Block 1
of Experiment 1A (N = 20)

Time (min)

Figure 4. Cumulative solution rates for Problem Types A-D in
Block 2 of Experiment 1 A.

Statistic

Mdn
Lower Q
Upper Q

A

40
14
61

Problem type

B

155
67

190

C

300
91

300

D

140
98

290
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predicted on the basis of tightness of the chunks (Type
A < Type D).

We computed single Wilcoxon tests to assess the statis-
tical significance of the differences observed in Block
1. Problems of Type A were solved significantly faster than
problems of Type B, N = 20, T = 12, p < .001, and pro-
blems of Type B were solved significantly faster than pro-
blems of Type C, N =.20, T = 41, p < .05. Moreover,
problems of Type A were solved significantly faster than
problems of Type D, N = 20, T = 10, p < .001. All dif-
ferences predicted by the constraint relaxation and chunk
decomposition hypotheses were statistically significant.

The solution times for Block 2 did not exhibit the rank
ordering observed in Block 1 (see Table 3). Single Wilcoxon
tests revealed no significant differences between problems
of Types A, B, and C and problems of Types A and D (all
ps > .10).

To test our transfer predictions, we compared solution
times in the first and second blocks for each problem type.
Single Wilcoxon tests showed significant transfer for prob-
lems of Type B, N = 20, T = 14, p < .001; Type C,N= 20,
T= 23,p< .01;andTypeD,AT = 20, T= 32,p< .05, but
not for problems of Type A, N = 20, T = 102, p = .91.

In short, problems that required the relaxation of wider
constraints took longer to solve, as did problems that
required the decomposition of tight chunks. After the first
encounter with the relevant problem types, these differences
disappeared. Amount of transfer from a first to a second
encounter was a function of initial difficulty, with more
difficult problem types exhibiting larger transfer effects.

Discussion

The results of Experiment 1A are consistent with the
hypotheses that constraint relaxation and chunk decomposi-
tion affect performance on matchstick arithmetic problems.
The frequency and speed of solution depend on which, and
how many, constraints have to be relaxed to find the solution
and whether the perceptual chunks that have to be decom-
posed are loose, intermediate, or tight, in the technical sense
defined in the General Theory section.

The results verify that it is easier to realize that one can
arbitrarily change values in matchstick arithmetic than to
realize that one also can change the operators, which in turn
is easier than to realize that one can transform an equation
into a tautology. It is easier to decompose multidigit roman
numerals into their component numerals than to decompose
plus signs, minus signs, equal signs, and single-digit roman

numerals. The fact that tight chunks add an increment of
difficulty independently of constraint relaxation (Type D is
more difficult than Type A) supports the hypothesis that we
have identified two separate sources of difficulty in match-
stick arithmetic problems.

Without an interval scale for measuring amount of
difficulty, we could not predict the difficulty of Type D
problems in relation to Types B and C because we had no
way of calculating the trade-off between the need for
constraint relaxation and the need for chunk decomposition.
The data show that problems of Type D were approximately
as difficult as problems of Type B.

The strength of the transfer effect observed in Experiment
1A is noteworthy. A single exposure to a problem of Type B,
C, or D was sufficient to make those problems as simple as
problems of Type A. The only deviation from our predictions
was that transfer was not significant for Type D problems in
the analysis of solution frequency. However, the analysis of
solution times showed that Type D problems became
significantly easier when encountered for the second time.

Experiment IB

In Experiment 1A, participants solved only one instance
of each problem type. Hence, the observed differences in
task difficulty may not have been due to the scope of
constraints and the tightness of chunks as proposed in the
theoretical analysis but rather to material effects related to
the specific tasks used in Experiment 1A. We conducted
another experiment to support the generality of the problem
type effect by assessing the relative difficulty of two
additional problems of each type.

Method

Participants. The 38 paid participants, 17 male and 21 female,
were recruited by advertising at the University of Munich campus
and in the local newspapers. They ranged in age from 20 to 36
years. They were randomly assigned to two experimental condi-
tions. Participants in the first condition solved Version 1 of each
problem type; participants in the second condition solved Version 2
of each problem type.

Procedure, materials, and design. The procedure was the same
as that used in Experiment 1A with the exception that participants
solved only one block of matchstick arithmetic problems. Table 4
shows the two versions of each problem type that were used in
Experiment IB. As in Experiment 1A, the dependent variables
were the frequency of problems solved within the 5-min limit and
the solution times.

Table 3
Solution Times (in Seconds) for Block 2
of Experiment 1A (N = 20)

Statistic

Mdn
Lower Q
Upper Q

A

33
18
59

Problem

B

38
27
73

type

C

10
7

47

D

42
20

124

Results

Solution frequencies. The results showed the same pat-
tern as that in Experiment 1A. Problems that required the
relaxation of constraints with wider scope were solved less
frequently (Type C < Type B < Type A). Figure 5 shows
the cumulative frequencies of solutions across 1-min inter-
vals for problems of Types A through C collapsed over both
experimental conditions. The predicted ordering of the
problem types held at each interval. Furthermore, problems
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Table 4
Problems Used in Experiment IB

Type

A
A
B
B
C
D

Version

Problem

IV = H + IV
VII = II + III
IV = VI + I

vin = vi - n
IV = IV + IV
IV = III + VI

1

Solution

VI = II +
VI = III +
IV = V I -

VIII - VI =
IV = IV =
IX = III +

IV
III
II
II
IV
VI

Version

Problem

in = iv - in
XI = I + XII
II = V + IV

VI = IV - II
VI = VI + VI
IV = V + IV

2

m
XII

nVI
VI
IX

Solution

= v i - m
= I + XI
= VI - IV
- I V = 11
= VI = VI
= V + IV

that required the decomposition of tight chunks were solved
less often than problems that required the decomposition of
loose chunks (Type D < Type A). Figure 6 shows the
cumulative frequencies of solutions across 1-min intervals
for problems of Types A and D collapsed over both
experimental conditions. The predicted ordering of the
problem types held at each interval.

A 2 X 4 ANOVA with the variables experimental
condition (Version 1 vs. Version 2; between participants) and
problem type (A, B, C, or D; within participants) was
computed on solution frequency. There was no main effect
for experimental condition, F{\, 36) = 0.39, MSE = 0.1503,
p = .52; that is, there were no overall differences in difficulty
between the two problem versions. Post hoc comparisons
revealed that there was no significant difference between the
two versions in any of the problem types (all ps > .10).
However, the main effect of problem type was significant,
F(4, 144) = 10.03, MSE = 0.1533, p < .001. Post hoc
comparisons showed that significantly fewer problems of
Type C were solved than problems of Type B (p < .001).
Although fewer problems of Type B were solved than

problems of Type A, the predicted difference failed to reach
statistical significance (p = .12). A further comparison
revealed that problems of Type D were solved less fre-
quently than problems of Type A (p < .05). The pattern of
results is almost the same as that in Experiment 1A, with the
differences being C < B < A a n d A < D .

Solution times. In a second step, solution times for
problems of Types A through D were analyzed. For prob-
lems that were not solved, the solution time was replaced
with the upper time limit of 5 min. Again, the distribution of
solution times was highly skewed. Therefore, we report
medians and quartiles and used ordinal tests to assess
statistical significance.

Table 5 shows that the medians and upper quartiles of
each problem type followed the rank ordering predicted by
the scope of constraints (Type A < Type B < Type C). The
medians also followed the rank ordering predicted by the
chunk decomposition hypothesis (Type A < Type D).

We conducted single U tests to detect differences in
solution times between the two versions of each problem

I
a
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3
<J

40
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10-

-
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•
•
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^

TypeA

TypeD

Figure 5. Cumulative solution rates for Problem Types A-C in
Experiment IB.

1 2 3 4 5

Time (min)

Figure 6. Cumulative solution rates for Problem Types A and D in
Experiment IB.
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Table 5
Solution Times

Statistic

Mdn
Lower Q
Upper Q

(in Seconds)

A

43 .
23
76

in Experiment IB

Problem type

B

126
57

165

C

300
30

300

D

104
63

300

type. None of them showed a significant difference (all
ps > .10). We computed single Wilcoxon tests to assess if
the differences between problem types were statistically
significant. Problems of Type A were solved significantly
faster than problems of Type B, N = 38, T = 107, p < .001,
and problems of Type B were solved significantly faster than
problems of Type C, iV = 38, T = 160, p < .01. Moreover,
Type A problems were solved significantly faster than Type
D problems, N = 38, T = 96, p < .001. As in Experiment
1A, problems that required relaxation of wider constraints
and problems that required decomposition of tight chunks
took longer to solve.

Discussion

The results of Experiment IB show that the main problem
type effect reported in Experiment 1A does not depend on
specific material effects. The difficulty of two more versions
of each problem type followed the predicted pattern. The
frequency of solution depends on the scope of constraints
that must be relaxed to find a solution and the tightness of
perceptual chunks to be decomposed. No differences were
observed between experimental groups that solved different
versions of each problem type. The results of Experiment IB
support the categorization of problem types according to the
constraint relaxation and chunk decomposition hypotheses.

The only deviation from our predictions was the lack of a
significant difference in solution frequency between prob-
lems of Type B and Type A. This nonsignificant difference is
probably due to a ceiling effect. The higher the likelihood
that a certain problem type is solved within the given time
interval, the higher the likelihood of obtaining nonsignifi-
cant effects in solution frequency. The huge and highly
reliable difference in solution times between problems of
Types A and B shows clearly that the predicted difference in
task difficulty was present in Experiment IB. Having shown
that the main problem type effect is not due to the specific
tasks used in Experiment 1 A, we examined the large transfer
effect obtained in that experiment.

Experiment 2

Historically, the term transfer has been used to refer to
improvement in a person's performance on Task B by prior
exposure to Task A. The key issue always has been what
properties of Tasks A and B mediate transfer effects.
Thorndike (1903,1913) proposed the first systematic theory
of transfer. His identical elements hypothesis claimed that
the amount of facilitation is a function of the similarity
between the two tasks. Singley and Anderson (1989) refor-

mulated the identical elements hypothesis in terms of
production rules.

The hypothesis that a problem representation can be
changed by constraint relaxation and chunk decomposition
implies that those changes should affect performance on
other problems in which the same constraints and chunks are
relevant. Therefore, the concept of representational change
adds an additional source of transfer, over and above
problem similarity. Once a problem representation has
changed in a particular way, the change persists and so
transfers to subsequent problems for which that representa-
tion is relevant. In particular, relaxing a constraint affects
performance on any task for which that constraint would
have blocked the correct solution, had it remained active.
For example, relaxing the constraint against arbitrarily
changing an operator in an equation has the potential to
affect performance on any task for which some operator
plays an important role. Similarly, decomposing a tight
chunk has the potential to affect performance on any task for
which that chunk is relevant. For example, decomposing a
number symbol like X into its component symbols \ and / has
the potential to affect performance on any problem that
involves that symbol.

The main purpose of Experiment 2 was to investigate the
relative contributions of similarity and representational
change to the transfer effects observed in Experiment 1 A. To
separate these effects, we varied surface similarity orthogo-
nally to the need to relax constraints and decompose chunks.

We varied similarity along two dimensions: the order of
the initial equation (i.e., the sequence of the symbols, the
location of the equal sign and the function term) and the
specific numerals that appeared in that equation. The match-
stick arithmetic domain allows us to vary both order and
numerals orthogonally to each other. For example, consider
the Type A problem

rv = v - in, (Problem 1)

which has the solution IV = VI — II. It can be solved by
moving one matchstick from the symbol /// to the symbol V.
This move violates the value constraint (but no other
constraint) and requires the decomposition of loose chunks
(but no tight chunks). A second encounter with Problem 1
obviously maximizes similarity of both numerals and order.
We refer to a second presentation of a previously encoun-
tered problem as a "same-same problem."

The Type A problem

v-ni = rv (Problem 2)

consists of the same numerals as Problem 1, but they are
presented in a different order. We refer to Problem 2 as a
"same-numerals problem" (with respect to Problem 1).

The Type A problem

ix = x-m (Problem 3)

contains different numerals than Problem 1, but the order is
similar. We refer to Problem 3 as a "same-order problem"
(with respect to Problem 1).
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Finally, consider the Type A problem

X - III = IX, (Problem 4)

which contains different numerals in a different order than
those in Problem 1. We refer to Problem 4 as a "different-
different problem" (with respect to Problem 1).

The matchstick arithmetic domain allows us to vary both
dimensions of similarity within each problem type. For each
of the four Problem Types A through D (see the Application
section), we can construct problem sets that vary both order
and numerals in the way illustrated by Problems 1 through 4
(see the Method section of this experiment).

If similarity is the main determinant of the transfer effects
observed in Experiments 1A and IB, then the transfer effects
should be smallest for same-same problems, intermediate in
size for same-numerals and same-order problems, and
largest for different-different problems, regardless of prob-
lem type. In contrast, if constraint relaxation and chunk
decomposition are the main determinants of the observed
transfer effects, then those effects should vary with problem
type but be equal across levels of similarity.

In Experiment 2, we attempted a modest generalization to
an American sample. Because Roman numerals are common
in Germany but rare in the United States, we expected
different levels of familiarity with this type of numeral. The
pattern of effects observed in Experiments lAand IB should
be robust with respect to this variable.

Method

Participants. Seventy-eight undergraduates (45 women and 33
men) from the University of Illinois at Chicago participated in the
study for course credit. They ranged in age from 18 to 38 years.
They were randomly assigned to the four experimental conditions.

Procedure. The training phase of Experiment 2 was identical
in purpose and procedure to the training phase of Experiment 1 A.

As expected, the participants in Experiment 2 (American students)
had less prior familiarity with Roman numerals than their counter-
parts in Experiment 1A (German students). The average time to
complete a training trial was 561 ms in Experiment 2 as compared
with 457 ms in Experiment 1 A.

In the experimental phase, participants encountered two blocks
of matchstick arithmetic problems. Each block contained two
instances of Type A, two instances of Type B, one instance of Type
C, and one instance of Type D. The six problems in Block 1 were
identical in the four experimental conditions. These six problems
appear in the second column in Table 6.

The four experimental conditions differed in how the six
problems in Block 2 related to the problems in Block 1. In the
same—same condition, the participants solved the same six prob-
lems as those in Block 1. In the same-numerals condition, the
participants solved six problems that contained the same numerals
as the problems in Block 1 but presented in a different order. These
problems are shown in the third column in Table 6. In the
same-order condition, the participants solved six problems that
presented different numerals in the same order as the problems in
Block 1. These problems are shown in the fourth column in Table 6.
Finally, in the different-different condition, the participants solved
problems that presented different numerals in different orders.
These problems are displayed in the fifth column in Table 6.

Problems were presented in random order within blocks. A new
random order was generated by the computer for each participant.
The problems were presented on a computer screen. Participants
pushed a button as soon as they knew the correct solution and then
said it out loud. If the solution was correct, they worked on the next
problem. If the solution was not correct, they continued to work on
the same problem until they announced another solution or
encountered the 5-min time limit. If participants did not solve a
problem within 5 min, they were told the solution.

Results

The frequency of solution and the time to solution were
the dependent variables. The results from each variable are
reported separately.

Table 6
Problems Used in Experiment 2

Problem type

A ;

Problem
Solution

Problem
Solution

Problem
Solution

Problem
Solution

Problem
Solution

Problem
Solution

Same-same

IV = V
IV = VI

IV = III

vi = m
i = n-
I = 111

rv = ra
i v - m

in = in

xi = ra
VI = III

- in
- I I

+ in
+ ra
¥ n
- I I

- i
T

+ ni
= m

H- III

+ ra

by Type and Condition

Experimental condition

Same-numerals

v - in = rv
vi - n = iv •

ni + m = iv
m + in = vi

II + II = i
ni - n = i

i - iv = m
I = IV - III

ni + ra = in
in = in = ra

III + III = XI

m + in = vi

Same-order

IX = X - III

ix = xi - n
iv = n + iv
vi = n + iv
ra = v + ra
ni = vi - ra

VIII = V - III

vm - v = ra
rv = rv + rv
IV = IV = IV

IX = I + III

iv = i + m

Different-different

x-ra = ix
XI - II = IX

II + iv = rv
II + rv = vi

v + ra = ni
vi - ra = ni

ra - vm = v
m = vin - v

iv + rv = iv
rv = iv = rv

i + m = ix
i + ra = iv
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Table 7
Percentage Solutions
Condition and Block

Condition

Same-same
Same-numerals
Same-order
Different-different

M

in Experiment 2 by

Block

1

67
64
64
71

66

2

96
99
95
95

96

M

82
82
80
83

82

Solution frequencies. Table 7 shows the frequency of
solution for the four similarity conditions. There were
minimal differences across conditions. Hence, similarity
appears not to have been a strong determinant of transfer
effects in this task domain.

However, the results for Block 1 showed the order of task
difficulty predicted by the constraint relaxation and chunk
decomposition hypotheses. Fewer problems were solved
within the time limit if the constraints to be relaxed had a
wider scope (Type C < Type B < Type A). Figure 7 shows
the cumulative frequencies of solutions for 1-min intervals
for Types A through C. The predicted rank ordering of the
problem types held at each interval.

Problems that required decomposition of tight chunks
were solved less often than problems that required decompo-
sition of loose chunks only (Type D < Type A). Figure 8
compares the cumulative solution frequencies for 1-min
intervals for Types D and A. The differences were in the
predicted direction at each interval.

20-

Time (min)

Figure 8. Cumulative solution rates for Problem Types A and D in
Block 1 of Experiment 2.

There was a transfer effect from Block 1 to Block 2. The
size of the effect did not differ among the four experimental
conditions. However, the transfer effect was larger for more
difficult problem types. Figure 9 shows the cumulative
frequency of solution for all four problem types on the
second block, aggregated across the four experimental

60-
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Figure 7. Cumulative solution rates for Problem Types A-C in
Block 1 of Experiment 2.
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3
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TypeB

TypeC

TypeD

5

Figure 9. Cumulative solution rates for Problem Types A-D in
Block 2 of Experiment 2.



1546 KNOBLICH, OHLSSON, HAIDER, AND RHENIUS

conditions. The relative lack of differences between problem
types in Block 2 is reflected in the overlap between the
curves. The larger transfer effects for more difficult problem
types are reflected in the upward shifts of the curves for
Types B, C, and D (compared with the corresponding curves
in Figures 7 and 8) and the relative lack of such a shift for
Type A.

An alpha level of .05 was used for all statistical tests. A
4 X 4 X 2 ANOVA with the variables similarity (same-
same, same-numerals, same-order, or different-different;
between participants), problem type (A, B, C, or D; within
participants), and block (1 vs. 2; within participants) was
computed on solution frequency. There was no significant
main effect for similarity, F(3, 74) = 0.34, MSE = 0.0791,
p = .79.

The main effect of problem type was significant, F(4,
222) = 46.45, MSE = 0.0782, p < .001; that is, some
problem types were more difficult than others. Post hoc
comparisons between problem types in Block 1 revealed that
the predicted difference between problems of Type A and
Type B failed to reach statistical significance (p = .14).
However, problems of Type B were solved significantly less
often than problems of Type C (p < .001). A further post
hoc comparison revealed that problems of Type A were
solved significantly less often than problems of Type D
(p < .001).

There was a significant main effect of the block variable,
F(l , 74) = 177.97, MSE = 0.0778, p < .001. More
problems were solved during the second block. Post hoc
comparisons revealed significant transfer for problems of
Types C (p < .001) and D (p < .001), that is, problems that
required relaxation of the most fundamental constraint and
problems that required decomposition of tight chunks. No
significant transfer was observed in problems of Type A
(p = .89). Contrary to our expectations, no significant
transfer was observed for problems of Type B (p = .14).

As these results imply, there was a significant two-way
interaction between problem type and block, F(4, 222) =
39.99, MSE = 0.0888, p < .001. Problem types that were
more difficult in the first block were solved more often in the
second block than in the first block. Consequently, there
were no significant differences in solution frequency be-
tween problem types in the second block (all ps > .10); all
problems were reduced to the difficulty level of the simplest
problems. The two-way interactions between similarity and
problem type and between similarity and block and the
three-way interaction between similarity, problem type, and
block were not significant.

In a further post hoc comparison, we compared the
difficulty of problem types in the second block in the
same-same and different-different conditions. We found no
significant differences between these two conditions for
Problem Type A (p = .98), B (p = .60), C (p = .30), or D
(P = -27).

Solution times. The distribution of solution times was
highly skewed. Therefore, we report medians and quartiles
and used ordinal tests to assess statistical significance. First,
we analyzed the main effect of task difficulty in the first
block of problems, and then we analyzed the transfer effects.

Table 8
Solution Times (in Seconds) for Block 1 of Experiment 2

Statistic

Mdn
Lower Q
Upper Q

A

61
28

116

Problem

B

95
46

166

type

C

300
126
300

D

300
157
300

Table 8 shows medians and lower and upper quartiles of the
solution times for problems solved in Block 1. The medians
exhibited the predicted rank ordering (Type A < Type
B < Type C). The solution times were longer for problems
of Type D than for problems of Type A.

We computed single Wilcoxon tests to assess if the
observed differences were statistically reliable. Problems of
Type A were solved significantly slower than problems of
Type B, N = 78, T = 913, p < .01; problems of Type B
significantly slower than problems of Type C, N = 78, T =
264, p < .001; and problems of Type D significantly slower
than problems of Type A, N = 78,T= 151, p < .001. These
results replicate those of Experiments 1A and IB. Solution
times were higher for problems that required relaxation of
wider constraints and problems that required decomposition
of tight chunks.

The rank ordering of solution times for problems of Types
A through D observed in Block 1 did not persist in Block 2
(see last three rows of Table 9). Unexpectedly, there were
significant differences between problem types in Block 2.
Wilcoxon tests showed that Type C problems were solved
significantly faster than problems of Type A, N = 78, T =
595, p < .001, and Type B, N = 78, T = 581, p < .001.
Furthermore, problems of Type D were solved faster than
problems of Type A, 2V = 78, T = 1,008,/? < .01.

Table 9
Solution Times (in Seconds) for Block 2 of Experiment 2

Condition and statistic

Same-same (n = 19)
Mdn
Lower Q
Upper Q

'Same-numerals (n = 20)
Mdn
Lower Q
Upper Q

Same-order (n = 19)
Mdn
Lower Q
Upper Q

Different-different (n = 20)
Mdn
Lower Q
Upper Q

All (N = 78)
Mdn
Lower Q
Upper Q

A

47
12
84

40
31
78

44
27
57

54
26

118

45
26
84

Problem

B

39
30
60

43
23
71

50
33

139

57
39
98

48
32
94

type

C

6
5
8

8
5

16

8
6

14

19
8

40

8
5

18

D

16
7

62

10
8

27

26
13
73

17
8

27

18
8

37
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These differences were not due to the persistence of the
differences observed in Block 1. The statistically significant
differences in Block 2 reversed the direction of the differ-
ences in Block 1. Therefore, the differences were unex-
pected but not inconsistent with our theory.

The lack of differences between the experimental groups
in the analysis of solution frequencies may be partly due to
ceiling effects. To address this problem, we conducted a
further analysis of solution times in the transfer block, which
provide a more sensitive measure to detect effects of
similarity on transfer. Table 9 shows the solution times for
each problem type in each group.

We conducted Kruskal-Wallis ANOVAs to assess the
effect of similarity on transfer for each problem type.
Solution times in the experimental conditions did not differ
significantly for transfer problems of Type A, H(3, N =
78) = 1.91, p = .59, and Type B, #(3, AT = 78) = 5.71, p =
.13. However, transfer problems of Type C were solved
faster when they were more similar to the problem solved in
Block 1, H{3, N = 78) = 11.05, p < .05. A similar effect
was seen in problems of Type D, but it was only marginally
significant, H(3, N = 78) = 6.88, p = .08. So, there was
some effect of similarity on transfer in the problem types that
were most difficult in Block 1. Note, however, that problems
of Types C and D were solved very fast in the transfer block.
Even in the conditions of lowest similarity, the solution
times for those problem types were faster than the solution
times for Problem Types A and B in the conditions of highest
similarity.

To test our transfer predictions, we compared solution
times in the first and second blocks for each problem type.
As Tables 8 and 9 show, solution times were shorter in Block
2 for all problem types. Problems with longer solution times
in Block 1 showed larger transfer effects. Single Wilcoxon
tests showed significant transfer for problems of Type A,
N=78,T= 1,108, p < .05; Type B, N = 78, T = 699, p <
.001; Type C, N = 78, T = 81, p < .001; and Type D, N =
78,7=95, /><.001 .

Discussion

The results replicated the main findings from Experiments
1A and IB. Problem type, as defined by the need to relax
constraints and decompose chunks, was the main determi-
nant of problem difficulty in the first block. The predicted
order of problem difficulty was present in the analysis of
solution frequency as well as in the analysis of solution time.
As in Experiment IB, there was one nonsignificant outcome;
that is, problems of Type B were not solved significantly less
frequently than problems of Type A within the given time
limit. At the same time, there was a statistically reliable
difference in solution time between these two problem types.
Therefore, it is likely that the nonsignificant outcome is due
to a ceiling effect (96% of the Type A and 90% of the Type B
problems were solved).

The transfer effects between the first and the second block
of problems followed the same pattern as that observed in

Experiment 1A. Similarity had no measurable effect on
solution frequency, whereas the size of the transfer effect
varied as a function of initial problem difficulty. Problem
types that were more difficult when encountered for the first
time yielded larger transfer effects. The only nonsignificant
outcome was the lack of the predicted difference in solution
frequency between a first and a second encounter of
problems of Type B. We think that this is also due to a ceiling
effect. All in all, the analysis of solution frequency suggests
that the transfer effects are mainly due to representational
change.

The pattern of solution times followed the pattern pre-
dicted by the representational change hypothesis. Solution
times were reduced on a second encounter for all problem
types. Furthermore, the reduction was larger for problem
types that were more difficult on a first encounter. Unexpect-
edly, problems of Types C and D yielded even shorter
solution times than the other problem types in Block 2.
Although our theory predicted larger transfer effects for
more difficult problems, it predicted a leveling of problem
difficulty, not a reversal. Also, similarity between a problem
solved in the first block and the corresponding transfer
problem in Block 2 had a weak effect on transfer (measured
by solution times) for those problem types. We offer the
following ad hoc explanations for these effects: First, all
numerals were the same in Type D problems. It is plausible
that this distinctive feature helped speed up recognition of
Type D problems. Second, the difference between the left
and right sides of the equation was always equal to five in
problems of Type E, and it is possible that participants
noticed this.

To summarize, the results of Experiment 2 support the
conclusion that constraint relaxation and chunk decomposi-
tion are stronger determinants of transfer effects in match-
stick arithmetic than surface similarity between problems.
Systematic variations of similarity had only weak effects.
Hence, the transfer observed in matchstick arithmetic prob-
lems is mainly a function of representational change and
cannot be explained by the identical elements theory alone.
The replications of the main effects of Experiments 1A and
IB show that these effects generalize across levels of
familiarity with Roman numerals.

Experiment 3

The purpose of Experiment 3 was to provide additional
support for the hypothesis that we have identified two
separate dimensions of difficulty in insight problem solving.
Experiments 1A and IB, and 2 showed that matchstick
arithmetic problems of Types C and D are more difficult than
problems of Types A and B (see Figures 2, 3, 5, 6, 7, and 8).
According to our theory, this quantitative similarity hides a
qualitative difference.

The difficulty of Type C problems is due to the need to
relax constraints on meaningful arithmetic statements, so
that equations of the familiar regular form

X= Y + Z
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can be transformed into equations of the unfamiliar tautologi-
cal form

X=Y=Z.

The difficulty of Type D problems, in contrast, is caused
by the need to decompose perceptual chunks like V and X
into their components so that the problem solver can
consider changing a V symbol into an X (or vice versa) by
horizontally sliding either the \ or the / component.

If problems of Types C and D are difficult for qualitatively
different reasons, it should be possible to manipulate one
source of difficulty without affecting the other. The fact that
the transformation between the regular form and the tauto-
logical form of Type C problems is reversible provides an
opportunity to test this hypothesis. Consider the problem

VI = III = III,

with solution VI = III + HI. The move required to solve this
problem is the reverse of the move required to solve the
regular Type C problems: Lift one of the matchsticks that
make up the second equal sign, rotate it, and put it down
again, thereby transforming the equal sign into a plus sign
and, indirectly, the tautological form into the regular form.

If the tautological form constitutes the initial state of a
Type C problem, constraints from arithmetic or algebra
should not interfere with its solution. There are no con-
straints that rule out the regular form, so moves that produce
the regular form should not be difficult to think of. Hence,
tautological Type C problems should be easier than regular
Type C problems on a first encounter. Once the problem
solver has seen the tautological form, and thus implicitly
been told that this form is valid and can be useful, the
tautology constraint ought to be relaxed. Once relaxed, it
should no longer interfere with the solving of regular Type C
problems. Hence, we predicted a facilitating effect of prior
exposure to tautological Type C problems on the solutions to
regular Type C problems.

Our theory makes different predictions for problems of
Type D. For these problems, equation structure is irrelevant.
The difficulty of Type D problems is due to the need to
decompose chunks like V and X into their / and \ compo-
nents. Hence, tautological Type D problems should be as
difficult as regular Type D problems, and prior exposure to
the tautological form should have little effect on the
performance of regular Type D problems. These predictions
can be tested by presenting Type D problems of the
following sort:

XI = VI = VI,

with solution VI = VI = VI.
The same logic applies to Type A problems. Because

equation structure is not the determinant of the difficulty of
these problems, we predicted that the difference between the
regular and tautological forms should have little impact on
the performance of Type A problems. This prediction can be

tested with problems like

VI = VII = V,

with solution VI = VI = VI. The corresponding predictions
for problems of Type B cannot be tested because there is no
tautological form of this problem type.

Method

Participants. Thirty-four undergraduates (18 women and 16
men) from the University of Hamburg and the University of
Munich participated in this study for course credit. They ranged in
age from 19 to 42 years.

Materials, design, and procedure. There were two sets of
problems. The regular set consisted of six regular problems: two of
Type A, two of Type B, one of Type C, and one of Type D. The
tautological set consisted of four tautological problems: two of
Type A, one of Type C, and one of Type D.

The participants were randomly assigned to either of the two
experimental groups. The regular-first group had 18 participants,
and the tautology-first group had 16 participants. Each group
solved two blocks of problems. In the regular-first group, the
participants solved the problems with the regular structure in the
first block and the problems with the tautological structure in the
second block. In the tautology-first group, the participants solved
the two sets of problems in the opposite order. Problems were
randomized within each block for both groups. The experimental
procedure was in other respects the same as that used in the
previous three experiments.

Results

Solution frequencies. An alpha level of .05 was used for
all statistical tests. Only the data from Problem Types A, C,
and D were relevant for the hypotheses being tested.

Table 10 shows the solution frequencies. As observed in
Experiments 1A and 2, the regular form of Type C problems
was difficult for the participants. Only 61% of Type C
problems were solved in Block 1 in the regular-first group.
In contrast, the tautological form of these problems was
easy. All tautological Type C problems were solved in Block

Table 10
Percentage Solutions in Experiment 3 by Condition,
Problem Type, and Block

Condition

Regular-first
Tautology-first

Regular-first
Tautology-first

Regular-first
Tautology-first

Type A

TypeC

TypeD

1

94
97

61
100

61
69

Block

2

100
91

100
94

94
93
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Table 11
Solution Times (in Seconds) in Experiment 3
for Regular Problems

Group and statistic

Regular-first
Mdn
Lower Q
Upper Q

Tautology-first
Mdn
Lower Q
Upper Q

A

32
" 20

59

37
17
79

Problem type

C

175
113
300

11
7

17

D

193
83

300

46
21

135

1 in the tautology-first group. The difference between the
groups in Block 1 was significant x2(l, N = 34) = 12.59,
p < .001. As predicted by the constraint relaxation hypoth-
esis, tautological Type C problems were easier than regular
Type C problems on a first encounter.

There was transfer from the tautological to the regular
Type C problems. All Type C problems were solved in Block
2 in the regular-first group. The difference between the two
blocks was significant for that group, x2(l> N= 18) =
13.85, p < .001. This result is in accordance with our
hypothesis that prior exposure to tautological Type C
problems removed the constraint that hinders the solution of
regular Type C problems.

The impact of prior exposure to tautological problems on
the solutions to regular problems could not be ascertained
because of a ceiling effect. All problems were solved in
Block 1 for that group, leaving no room for improvement on
Block 2.

In contrast, the initial difficulty of Type D problems was
almost unaffected by the difference between regular and
tautological equation forms. In Block 1, 61% of the prob-
lems were solved in the regular-first group and 69% in the
tautology-first group, a nonsignificant difference, x2(l>
N = 34) = 0.22, p = .64. Performance improved in both
groups by approximately the same amount. In Block 2, 92%
versus 94% of the problems were solved. The effect was
significant for the regular-first group, x2(l, N = 18) = 5.79,
p < .05, and marginally significant for the tautology-first
group, x2(l, N = 16) = 3.28, p = .07. These results are
consistent with the hypothesis that the tautological form
does not affect initial difficulty and transfer in problems of
TypeD.

As predicted, the initial difficulty of Type A problems was
also unaffected by the experimental manipulation. The
solution percentages for Block 1 were 94% and 97% in the
two groups. Because of the ceiling effect, the impact of prior
exposure to tautological problems on the solution rate for
regular problems could not be ascertained.

Solution times. As in the former experiments, we report
medians and quartiles and used ordinal tests in our analysis
because the distribution of solution times was far from
normal. The median solution times and the lower and upper
quartiles for the regular problems in both groups are shown
in Table 11. The regular-first group once again replicated the

predicted ordering of the three relevant Problem Types A, C,
and D. Two Wilcoxon tests showed that Type C problems
were solved significantly slower than Type A problems, n =
18, T = 3, p < .001. Moreover, Type D problems were
solved significantly slower than Type A problems, n = 18,
T= n,p<m.

The pattern of results in the tautology-first group was
quite different. Solution times for the regular Type A and
Type D problems were longer than those for Type C
problems. Two Wilcoxon tests showed that the difference
between Type A and Type C problems was significant, n =
16, T = 16, p < .01, as was the difference between Type C
and Type D problems, n = 16, T = 16, p < .01. The
difference between Type A and Type D problems was not
significant (p = .50). Prior exposure to tautological prob-
lems made regular Type C problems easier than either Type
A or Type D problems.

To further examine the impact of prior exposure to the
tautological form on the solution times for regular problems,
we compared the solution times from Block 1 in the
regular-first condition with the solution times from Block 2
in the tautology-first condition. Single U tests showed that
the difference between these conditions was not significant
for Type A problems, U = 128, Z = -0.53, p = .59.
However, the difference was significant for Type C prob-
lems, U = 8, Z = 4.67, p < .001, and Type D problems, U =
65, Z = 2.71, p < .01. Prior exposure to tautological
problems caused a facilitating effect for Type C problems
and Type D problems but not for Type A problems.

The median solution times and the lower and upper
quartiles for the tautological problems in both experimental
groups are shown in Table 12. As predicted, tautological
Type C problems were easier than regular Type C problems
on a first exposure, U = 28, Z = 4.02, p < .001. Tautological
Type D problems were as difficult as regular Type D
problems on an initial encounter; the numerical difference
was far from significant, U = 116, Z = 0.96, p = .33.
Unexpectedly, participants took somewhat longer to solve
tautological Type A problems than regular Type A problems;
the difference was marginally significant, U = 34, Z =
-1.17,p = .O9.

We conducted further Wilcoxon tests to determine if there
were significant differences between the three problem types
in the tautology-first condition. Tautological problems of

Table 12
Solution Times (in Seconds) in Experiment 3
for Tautological Problems

Group and statistic

Tautology-first
Mdn
Lower Q
Upper Q

Regular-first
Mdn
Lower Q
Upper Q

A

79
23

111

12
9

26

Problem type

C

27
17
53

18
13
35

D

106
33

300

21
12

110
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Type C were solved significantly faster than problems of
Type A, n = 16,T=27,p< .05, and problems of Type D,
n = 16, T = 21, p < .05. Although problems of Type A were
solved faster than problems of Type D, the difference did not
reach statistical significance, n = 16, T = 38,/> = .21.

To examine the impact of prior exposure to the regular
form on the solution times for tautological problems, we
compared the solution times from Block 1 in the tautology-
first condition with the solution times from Block 2 in the
regular-first condition. Tautological Type A problems were
solved significantly faster when regular Type A problems
had been encountered earlier, U = 54, Z = -3.10, p < .01.
Tautological Type D problems were solved marginally
significantly faster when regular Type D problems had been
encountered earlier, U = 89, Z = -1.88, p = .06. Solving
regular Type C problems first had no impact on the solution
times of later encountered tautological Type C problems,
U= 113, Z = -1.07, p = . 28.

Discussion

The results of Experiment 3 bore out the predictions that
the initial difficulty of Type C problems would be affected by
the tautological form, whereas the initial difficulty of
tautological Type D problems would be unaffected, and that
prior exposure to tautological problems would have a
different effect on regular problems of Type C than on
problems of either Type A or Type D.

The solution frequencies and the solution times support
the prediction that tautological Type C problems were less
difficult than regular Type C problems on a first encounter.
They were even easier than the tautological form of Type A
and Type D problems. In contrast, tautological problems of
Type D were as difficult as regular Type D problems.
Tautological problems of Type A were solved as often as
regular Type A problems, but unexpectedly, the solution
times for tautological problems were significantly higher
than the solution times for regular problems. One possible ad
hoc explanation for this effect is that problem solvers first
tried to manipulate the equal signs in the tautological form
because their initial goal included the constraint that the
solution consisted of the regular form. Only if the manipula-
tion of the equal signs did not lead to a solution did they start
to manipulate values within the irregular form.

The results also support our predictions about the effects
of prior exposure to tautological problems on the solution of
regular problems. Regular problems of Type C were solved
more often and faster if tautological Type C problems had
been solved before, whereas the difficulty of tautological
Type C problems was unaffected by prior solution of regular
Type C problems. There was transfer in both directions
between the tautological and the regular Type D problems
(with the small restriction that the transfer was only margin-
ally significant in the tautology-first group). Although solv-
ing tautological Type A problems first had no impact on the
later solution of regular Type A problems, solving regular
Type A problems first helped to solve tautological Type A
problems later. The latter result was unexpected, but it can
be understood by the same logic that explains the higher
difficulty of the tautological Type A problems. Problem
solvers who have solved the regular form of Type C
problems know that it can be useful to produce the tautologi-
cal form. Therefore, they do not prefer moves that produce
the regular form, whereas those problem solvers who do not
have experience with the regular form do.

General Discussion

The constraint relaxation and chunk decomposition hypoth-
eses are powerful tools for understanding both the relative
difficulty of individual problems and transfer effects. Table
13 gives an overview of the effects of task difficulty
observed in Experiments 1 A, IB, and 2.

Our analysis of the need to relax constraints predicted the
rank ordering of three types of superficially similar match-
stick arithmetic problems with respect to initial difficulty.
We predicted that problems of Type A would be less difficult
than problems of Type B, which in turn would be less
difficult than problems of Type C (see Tables 1,4, and 6 for
several instances of each problem type). Rows 1, 2, 4, and 5
in Table 13 illustrate that die predicted order was observed in
all three experiments that assessed the main effect of task
difficulty (Experiments 1A, IB, and 2) in both dependent
variables—solution frequency and solution time. Problems
of Types A and B did not differ significantly in the analysis
of solution frequencies in Experiments IB and 2. However,
at the same time, the differences in solution times were
highly significant. Therefore, it is likely that the nonsignifi-

Table 13
Main Effects of Task Difficulty in Experiments 1A, IB, and 2

Prediction

% solved
A > B
B > C
A > D

Time
A < B
B < C
A < D

Experiment

Predicted
order

Yes
Yes
Yes

Yes
Yes
Yes

1A

P

<.05
<.01

.13

<.001
<.O5
<.001

Experiment

Predicted
order

Yes
Yes
Yes

Yes
Yes
Yes

IB

P

.12
<.001
<.05

<.OO1
<.01
<001

Experiment 2

Predicted
order

Yes
Yes
Yes

Yes
Yes
Yes

P

.14
<.001
<.001

<.01
<.001
<.001
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cant outcomes in the analysis of solution frequency are due
to ceiling effects (more than 75% of the Type B problems
were solved in Experiments IB and 2).

The chunk decomposition hypothesis predicts that prob-
lems that require the decomposition of tight perceptual
chunks (i.e., chunks with components that are not them-
selves chunks) are more "difficult than problems that require
the decomposition of intermediate and loose chunks (i.e.,
chunks with components that are themselves chunks). This
led to the prediction that problems of Type D would be more
difficult than problems of Type A (see Tables 1,4, and 6 for
several instances of each problem type). Rows 3 and 6 in
Table 13 show that the predicted order of task difficulty was
present in Experiments 1A, IB, and 2, in both solution
frequencies and solution times. The solution frequencies in
Experiment 1A did not differ significantly between problems
of Types D and A. Again, the difference in solution time was
highly significant, making it likely that the nonsignificant
outcome is due to a ceiling effect and the relatively small
sample size in Experiment 1.

The constraint relaxation and chunk decomposition hypoth-
eses also predict large transfer effects for the more difficult
problem types, namely, Types B, C, and D. Table 14 gives an
overview of the transfer effects obtained in Experiments 1A
and 2.

The predicted order of task difficulty for the first and
second encounters of a problem type was never violated.
Although transfer for the easiest Type A problems was seen
only in the solution times of Experiment 2 (probably
because of the large sample size), significant transfer for
problems of Types B, C, and D was present in Experiments
1A and 2 in both solution frequencies and solution times.
There were two deviations from this general pattern. There
was no significant effect of transfer on solution frequencies
for problems of Type D in Experiment 1 and problems of
Type B in Experiment 2. However, we observed significant
differences in solution time in both cases. The lack of
significant effects is once again likely to be due to ceiling
effects. The solution frequency for Type D problems in
Experiment 1 was already 75% during the first block, and
the sample size was quite small. The solution frequency for

Table 14
Transfer in Experiments! A and 2

Prediction
% solved

A(1)<A(2)
B (1) < B (2)
C (1) < C (2)
D (1) < D (2)

Time
A (1)2 A (2)
B (1) > B (2)
C (1) > C (2)
D (1) > D (2)

Experiment 1A

Predicted
order

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

P

.80
<.05
<.001

.13

.91
<.OO1
<.01
<.O5

Experiment 2

Predicted
order

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

P

.89

.14
<.001
<.001

<.05
<.001
<001
<.001

Note. Numbers in parentheses refer to experiment numbers
(1 = Experiment 1A; 2 = Experiment 2).

Type B problems in Experiment 2 was more than 80%.
Therefore, there was little room for improvement in the
second block.

The constraint relaxation and chunk decomposition hypoth-
eses predict not only transfer for more difficult problem
types but also an interaction such that problems with higher
initial difficulty exhibit larger transfer effects. We found this
interaction in all four experiments. The effect of task
difficulty observed on a first encounter always disappeared
when the same problem types were encountered a second
time. The leveling out of task difficulty on a second
encounter is best seen when comparing Figures 2 and 3 with
Figure 4 (Experiment 1A) and comparing Figures 7 and 8
with Figure 9 (Experiment 2).

Experiment 3 provided additional support for the hypoth-
esis that the need to relax constraints and the need to
decompose chunks are different sources of difficulty in
insight problem solving. Although presenting problems of a
tautological form completely removed the former source of
difficulty, it did not affect the latter.

To summarize, our experiments provide some evidence
that constraint relaxation and chunk decomposition are the
main determinants of task difficulty and transfer in the
domain of matchstick arithmetic problems. The predicted
order of task difficulty was never violated, and the predicted
transfer was always present, at least numerically. The few
nonsignificant results we obtained are likely due to ceiling
effects. In the next section, we discuss whether alternative
theories of insight can explain our results.

Alternative Explanations

Theories of insight fall into two broad classes: theories
that explain why insight is at all possible and theories that
explain why insight is difficult to attain. Also, there are
theories of thinking based on alternative assumptions about
knowledge representation.

How is insight possible? According to the Gestalt
psychologists (Kohler, 1924, 1925; Wertheimer, 1945/
1959), a solution appears in consciousness when the percep-
tual field reorganizes itself into a better, more harmonious or
balanced state (Ohlsson, 1984a). In the terminology of
contemporary complexity theory, the Gestalt psychologists
(especially Kohler, 1924) saw insight as an instance of
self-organization.

At a general level, the gestalt concept of reorganization is
certainly applicable to matchstick arithmetic. However, it
cannot explain particular effects. For example, why does
reorganization of the perceptual field take longer in prob-
lems of Types C and D than in problems of Type A? The
reorganization concept has not been specified at the level of
detail that is required to answer such questions.

The hypothesis of variation and selection claims that
novel solutions are constructed by creating more or less
random variants of existing solutions until one is found that
solves the current problem (Johnson-Laird, 1989). This idea
has been proposed many times under different names: blind
variation and selective retention (Campbell, 1960), chance
permutations and configuration formation (Simonton, 1988),
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generate and test (Newell & Simon, 1972), generation and
exploration (Finke, 1995; Finke, Ward, & Smith, 1992), and
trial and error (Thomdike, 1903,1913).

As a general characterization of problem solving, the
variation-selection hypothesis is certainly correct. What else
can a problem solver do if one solution fails than try another
one? In particular, it is plausible that our participants kept
generating different possible moves until they found one that
worked. However, without auxiliary assumptions that pre-
dict the order in which the possible moves are considered,
the variation-selection principle cannot explain why it takes
longer to generate the right move for some problems than
others. Also, it is not clear how the variation-selection idea
by itself can explain differential transfer effects for different
types of problems.'

In contrast to both the reorganization and variation-
selection hypotheses, Bowers, Farfolden, and Mermigis
(1995), Perkins (1981), Weisberg (1986, 1993, 1995), Weis-
berg and Alba (1981), and others have described creative
problem solving as a gradual transformation of past experi-
ence. Detailed analyses of creative processes have revealed
how artistic and creative products are rooted in such
experience (Weisberg, 1993).

The gradual transformation view is implausible with
respect to matchstick arithmetic. Our participants solved the
experimental problems in a matter of seconds or minutes,
and, unlike the artists and scientists studied by Weisberg
(1993) and others, they did not produce and repeatedly
revise a creative product. The gradual transformation hypoth-
esis is consistent with what is known about temporally
extended creative enterprises, but it does not explain why
some single-step problems take longer to solve than others
nor why such problems exhibit differential transfer effects.

These three hypotheses fail to explain our data because
they do not provide any mechanism for explaining why
impasses occur and hence cannot explain why an impasse
lasts longer in one problem than in another. We next consider
theories explaining impasses but not insights.

Why is insight difficult? The functional fixedness hypoth-
esis claims that mental representations of objects are associ-
ated with the common functions for those objects. An insight
problem that requires a familiar object to be used in an
unfamiliar way is difficult to solve because the unfamiliar
usage of the object is blocked by the spontaneous retrieval of
its more familiar function. This hypothesis has empirical
support (Adamson, 1952; Birch & Rabinowitz, 1951;
Duncker, 1945; Flavell, Cooper, & Loiselle, 1958). Two
computer models of functional fixedness have been de-
scribed in Keane (1989) and in an unpublished report by
Greeno and Berger (1987); both are reviewed in Ohlsson
(1992b, pp. 25-27).

With respect to matchstick arithmetic, the functional
fixedness hypothesis suggests that our participants did not
immediately think of the right move because they were
distracted by spontaneous recall of more familiar uses of
matches or spontaneous recall of the normal meaning of
arithmetic symbols. This hypothesis is plausible but cannot
explain the differences among problem types with respect to
either initial difficulty or amount of transfer because all of

the problems involved matches. Also, the functional fixed-
ness hypothesis explains why impasses arise but not how
they are resolved. People must have some process by which
they eventually come to think of the unfamiliar function;
otherwise they would fail to solve insight problems in
general and matchstick arithmetic problems in particular,
contrary to our observations.

The mental ruts hypothesis claims that insight problems
are difficult because initial exploration of an unsuccessful
search path adds activation to that path, which in turn
increases the probability of further exploration of that path
and therefore decreases the probability of thinking of
another path. This type of explanation has been expressed in
different terminologies: Einstellung (Luchins, 1942), famil-
iarization and selective forgetting (Simon, 1966), mental
ruts (Smith, 1995a, 1995b), set and forgetting (Weisberg,
1986, p. 30), and false starts and absence of interference
(Woodworth, 1938, p. 823).

The mental ruts hypothesis claims that our participants
did not immediately think of the right move because they
kept considering the same wrong move (or moves) over and
over again. This is indeed a potential cause of impasses.
However, the mental ruts hypothesis also predicts that
problem solvers, once entrenched in a false solution, cannot
recover without a pause. The main way to escape from a
mental rut is to set the problem aside for a while so that the
activation of the unsuccessful path can decay to the point
where alternative paths can compete during retrieval and
decision making (Ohlsson, 1992b). But our participants did
not have the opportunity to take a pause; yet, they often did
resolve their impasses. Another possibility is that an external
stimulus shakes the problem-solving process out of a mental
rut. But the display never changed while participants solved
a task, so the information in the problem environment
remained constant. Also, the mental ruts hypothesis cannot
explain why the tendency to become stuck in a mental rut is
stronger for some matchstick arithmetic problems than
others. Nor can this hypothesis explain differential transfer
effects for different problem types.

Alternative knowledge representations. Other alterna-
tive hypotheses differ from ours by assuming that the
relevant knowledge is encoded in some other format than
constraints and chunks. For example, the remote associa-
tions hypothesis claims that the participants have an associa-
tive hierarchy for matchstick arithmetic problems such that
certain actions or operations are more likely to be accessed
than others (Smith, 1995a, 1995b). Priming of the relevant
associations might produce short-term transfer effects.

It is highly unlikely that the majority of the participants in
our experiments had a well-developed hierarchy of associa-
tions for matchstick arithmetic problems. Although some of
them might conceivably have seen a matchstick problem in a
psychology textbook or a collection of brain teasers, solving
matchstick problems is not, in our experience, a common
pastime among college students either in the United States
or in Germany. Also, an explanation for our data in terms of
association hierarchies requires auxiliary assumptions to
explain why the associations needed to solve some problem
types are more remote than others.
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The related differential recall hypothesis claims that task
knowledge is encoded in procedures (e.g., collections of
production rules; Anderson & Lebiere, 1998) and that
different procedures are associated with different speeds
because of different degrees of familiarity. Although the
participants in our experiments probably did not possess
specific procedures for matchstick arithmetic problems, they
obviously did possess general procedures or motor programs
for manipulating physical objects. To explain our findings,
this hypothesis must be augmented with auxiliary assump-
tions to explain why procedures for sliding or rotating an
object are recalled slower than procedures for moving an
object. Everyday experience contains enough instances of
objects being rotated or pushed sideways so that this
hypothesis is an unlikely explanation for why one set of
procedures would take tens of seconds—in some cases
several minutes—longer to recall.

Generality

The hypotheses that impasses are caused by unhelpful
constraints and chunks acquired in past experience and that
impasses are resolved through constraint relaxation and
chunk decomposition presuppose that at least some knowl-
edge is encoded in constraints and chunks. Our theory would
be strengthened by independent evidence for this assump-
tion. At the task-specific level, we are certain that the
participants in our experiments initially assimilated match-
stick arithmetic problems to their prior knowledge of
arithmetic; the number symbols, the arithmetic operations,
and the equation format make this highly plausible. How-
ever, we do not have independent evidence that this knowl-
edge is encoded in constraints. Our chunks hypotheses are
on stronger ground. Our training procedure (see the Method
section in Experiment 1A) explicitly instructed the partici-
pants to see symbols like VII as complex patterns and / as a
subpattern of VII, and it is highly likely that their past
experience had biased them against seeing / and \ as
meaningful subpatterns of V andX. In short, our experiments
tested the specific form that our general hypotheses took
when articulated vis-a-vis the domain of matchstick arith-
metic problems, as opposed to the general hypotheses
themselves.

However, the generality of constraints and chunks is
supported by a wide range of studies. Constraints that need
to be relaxed for successful problem solving have been
identified in many other insight problems than matchstick
arithmetic. For example, the Nine Dots Problem1 is difficult
because people try to keep their lines inside the square
formed by the dots, a constraint that prohibits the solution
from being found (Scheerer, 1963, p. 120).2 The Six
Matches Problem3 is difficult because people implicitly
assume that the figure is supposed to be two-dimensional
(Bogoyavlenskaya, 1972; Scheerer, 1963, p. 120). Similarly,
it is plausible that the Inverted Pyramid Problem4 is difficult
because people implicitly assume that the $100 bill is not to
be destroyed. The source of this constraint in everyday life is
obvious. Isaak and Just (1995) specified the constraints that
need to be relaxed for 21 different insight problems (Table

9.1, p. 284). The constraint construct is also useful in
explaining how people solve the Tower of Hanoi puzzle5

(Richard et al., 1993), how problem solvers identify the most
fruitful mapping between a target and many possible sources
in analogical reasoning (Holyoak & Thagard, 1989), how
learners detect and correct their own errors during skill
acquisition (Mitrovich & Ohlsson, in press; Ohlsson, 1992a,
1996; Ohlsson, Ernst, & Rees, 1992; Ohlsson & Rees,
1991), and how cognitive dissonance is reduced (Shultz &
Lepper, 1996).

The usefulness of the chunk construct for understanding
noninsight problem solving was demonstrated by Chase and
Simon (1973). They found that chess masters perceive a
complex chessboard in terms of well-known configurations
of chess pieces rather than in terms of single chessmen, as
the novice player does. These results have been replicated
with respect to other board games (Reitman, 1976), elec-
tronic circuit diagrams (Egan & Schwartz, 1979), and other
domains (Ericsson, 1985). Chunking effects also have been
observed in geometry proof finding (Koedinger & Anderson,
1990; Ohlsson, 1990). The chunk construct is also a central
component in explanations of skill acquisition (Rosenbloom
et al., 1989), training effects in working memory (see
Ericsson & Lehmann, 1996, pp. 292-296, for a review), the
perception of reversible figures (Attneave, 1971; Hochberg
& Brooks, 1960; Toppino & Long, 1987), and social
stereotypes (Hamilton, 1994; Hilton & Hippel, 1996).

In short, the two constructs of constraints and chunks are
useful in understanding a wide variety of psychological
phenomena. An explanation of insight in terms of constraint
relaxation and chunk decomposition is thus consistent with a
large body of psychological research.

In general, the concept of representational change is
consistent with the fact that every problem is both like and
unlike past problems. Hence, human beings have no choice
but to extrapolate the past in their efforts to make sense of
the present, and in most situations, past experience is indeed
more help than hindrance. However, there is no guarantee
that any particular extrapolation will succeed, and the
complexity and the variability of the environment ensure
that individuals will encounter problems and situations in
which past experience is misleading. To act successfully
vis-a-vis such situations, the mind must override the impera-
tives of experience by changing its representation of the

1 Nine dots form a 3 X 3 square on a piece of paper. Draw a line
with a pencil that goes through all nine dots, without duplicating
any part of the path and without lifting the pencil from the paper.

2 This interpretation of performance on the Nine Dots Problem
has been criticized by Weisberg and Alba (1981, 1982). We
disagree with their critique for reasons stated in Ohlsson (1992b,
p. 15).

3 Construct four equilateral triangles out of six matches.
4 A steel pyramid is perfectly balanced upside down on a steel

table, its tip resting on a $100 bill. Remove the bill without
disturbing the pyramid.

5 There are JV disks stacked in order of decreasing size on one of
three pegs. Move the stack to another peg by moving one disk at a
time and without ever putting a larger disk on a smaller one.
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problem by relaxing constraints; decomposing chunks; and,
presumably, by other, yet to be discovered, processes.
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